

Studies on 3'-Quaternary Ammonium Cephalosporins[†] II¹⁾

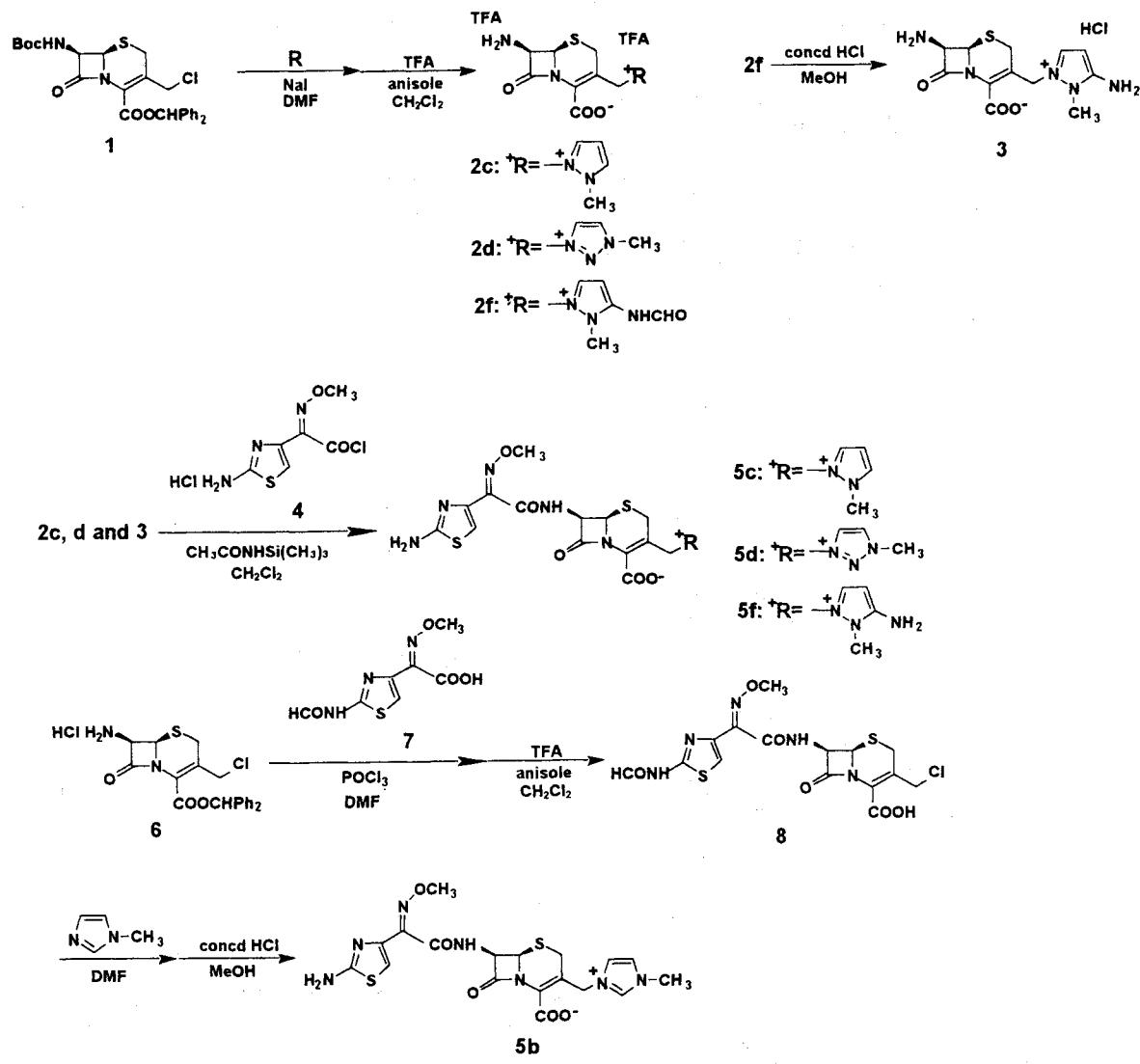
Synthesis and Antibacterial Activity of 7 β -[(Z)-2-(2-Aminothiazol-4-yl)-2-methoxyiminoacetamido]-cephalosporin Derivatives Bearing Various Quaternary Ammonium Methyl Groups at the 3 Position

HIDENORI OHKI, KOHJI KAWABATA*, SHINYA OKUDA,
TOSHIAKI KAMIMURA and KAZUO SAKANE

New Drug Research Laboratories,
Fujisawa Pharmaceutical Co., Ltd.,
2-1-6 Kashima, Yodogawa-ku,
Osaka 532, Japan

(Received for publication April 27, 1995)

In the last decade, a number of new parenteral cephalosporins with a broad spectrum of antibacterial


activity and high stability against various β -lactamases have been marketed²⁾. Most of them have a 7 β -[(Z)-2-(2-aminothiazol-4-yl)-2-alkoxyiminoacetamido] side chain, such as ceftizoxime (CZX). They show excellent activity against Gram-negative bacteria except *Pseudomonas aeruginosa* and moderate activity against Gram-positive bacteria, especially *Staphylococcus aureus*.

Recently, 3'-quaternary ammonium cephalosporins, such as ceftazidime (CAZ), cefpirome (CPR)³⁾ and cefepime (CFPM, 5e)⁴⁾ which show increased activity against both Gram-positive bacteria including *S. aureus* and Gram-negative bacteria including *P. aeruginosa* have been marketed or developed. Thus, our efforts have been focused on synthesizing novel 3'-quaternary ammonium cephalosporins with enhanced activity against Gram-positive bacteria including *S. aureus* and Gram-negative bacteria including *P. aeruginosa*.

In this paper, we report the synthesis and antibacterial activity of new 3'-quaternary ammonium cephalosporins.

3'-Quaternary ammonium cephalosporins (5a and 5e)

Scheme 1.

[†] This paper was presented in part at the 13th Symposium on Medicinal Chemistry., Tokyo, Dec. 2~4, 1992

with pyridinium and 1-methylpyrrolidinium were prepared according to the procedure in the literature^{3,4)}. 3'-Azolium cephalosporins (**5b~d** and **f**) were prepared by the two routes outlined in Scheme 1. Diphenylmethyl 7β -*tert*-butoxycarbonylamino-3-chloromethyl-3-cephem-4-carboxylate (**1**) was treated with the corresponding azole compounds (**R**) in the presence of sodium iodide, followed by deprotection of the *tert*-butoxycarbonyl and diphenylmethyl groups with trifluoroacetic acid to give 7β -amino-3-azoliomethyl-3-cephem-4-carboxylate (**2c, d** and **f**). The formyl group of **2f** was removed with concd hydrochloric acid to give 7β -amino-3-(3-amino-2-methylpyrazolio)methyl-3-cephem-4-carboxylate hydrochloride (**3**). The 7ACA derivatives (**2c, d** and **3**) were acylated with (*Z*)-2-(2-aminothiazol-4-yl)-2-methoxyiminoacetylchloride hydrochloride (**4**)⁵⁾ to give 7β -[*(Z)*-2-(2-aminothiazol-4-yl)-2-methoxyiminoacetamido]-3-azoliomethylcephalosporin derivatives (**5c, d** and **f**).

Alternatively, compound **5b** was prepared by substitution of 3-chloromethylcephalosporanic acid (**8**) with 1-methylimidazole. Diphenylmethyl 7β -amino-3-chloromethyl-3-cephem-4-carboxylate hydrochloride (**6**)⁶⁾ was acylated by the Vilsmeier method with (*Z*)-2-(2-formamidothiazol-4-yl)-2-methoxyiminoacetic acid (**7**)⁷⁾,

followed by deprotection with TFA to give 7β -[*(Z)*-2-(2-formamidothiazol-4-yl)-2-methoxyiminoacetamido]-3-chloromethyl-3-cephem-4-carboxylic acid (**8**). **8** was treated with 1-methylimidazole, followed by deprotection with concd hydrochloric acid to give 3-(3-methylimidazolio)methylcephalosporin (**5b**).

The antibacterial activity (MICs) of the prepared 3'-quaternary ammonium cephalosporins (**5a~f**) along with CZX and CPR as reference compounds against selected Gram-positive and Gram-negative bacteria are shown in Table 1. MICs were determined by the standard serial 2-fold agar dilution method using Müller-Hinton agar.

The antibacterial activity of the synthesized cephalosporins (**5a~e**) against *S. aureus* were superior to that of CZX. Furthermore, the cephalosporins except **5b** showed better activity against *P. aeruginosa* than CZX. MICs of the heteroaromatic derivatives such as pyridinium (**5a**) and azolium (**5b~d**) cephalosporins against *S. aureus* were superior to that of the alicyclic ammonium derivative such as 1-methylpyrrolidinium cephalosporin (**5e**). However, the heterocyclic derivatives (**5a, c** and **d**) except **5b** have slightly less activity against *P. aeruginosa* than **5e**.

Among the 3'-quaternary ammonium cephalosporins

Table 1. Antibacterial activity (MIC, $\mu\text{g}/\text{ml}$) of 3'-quaternary ammonium cephalosporins (**5a~f**).

Compound No.	[†] R	S.a.	E.c.	K.p.	P.a. 1	P.a. 2*	$10^6 \text{ cfu}/\text{ml}$
5a		0.78	≤ 0.025	0.05	25	3.13	
5b		1.56	0.05	0.05	200	200	
5c		1.56	0.05	0.1	12.5	6.25	
5d		0.78	≤ 0.025	0.05	25	3.13	
5e (CPFM)		3.13	0.05	0.1	6.25	6.25	
5f		0.78	≤ 0.025	0.05	12.5	3.13	
CZX		12.5	≤ 0.025	≤ 0.025	50	25	
CPR		0.78	0.05	0.1	6.25	6.25	

* S. a.; *Staphylococcus aureus* 209P JC-1, E. c.; *Escherichia coli* NIH JC-2, K. p.; *Klebsiella pneumoniae* 12, P. a. 1; *Pseudomonas aeruginosa* IAM 1095, P. a. 2; *Pseudomonas aeruginosa* 2.

tested, pyrazolium cephalosporin (**5c**) showed well-balanced activity against Gram-positive bacteria including *S. aureus* and Gram-negative bacteria including *P. aeruginosa*. Thus, in order to find a pyrazolium cephalosporin with ever better activity, we introduced substituents on to the pyrazolium ring of *7β*-[(*Z*)-2-(2-aminothiazol-4-yl)-2-methoxyiminoacetamido]cephalosporin (**5c**). As shown in Table 1, we discovered that the introduction of an amino group to the pyrazolium ring imparts increased potency against *S. aureus* and *P. aeruginosa* compared to CPR.

In summary, *7β*-[(*Z*)-2-(2-aminothiazol-4-yl)-2-methoxyiminoacetamido]-3-(3-amino-2-methylpyrazolio)-methyl-3-cephem-4-carboxylate (**5f**) showed extremely potent broad-spectrum activity against both Gram-positive bacteria, including *S. aureus*, and Gram-negative bacteria, including *P. aeruginosa*. Our further studies will be presented in subsequent papers.

References

- 1) OHKI, H.; K. KAWABATA, S. OKUDA, T. KAMIMURA & K. SAKANE: FK037, A new parenteral cephalosporin with a broad antibacterial spectrum: Synthesis and antibacterial activity. *J. Antibiotics* 46: 359~361, 1993
- 2) For a review, see: DUERCKHEIMER, W; J. BLUMBACH, R. LATTRELL & K. H. SCHEUNEMAN: Recent developments in the field of β -lactam antibiotics. *Angew. Chem. Int. Ed. Engl.* 24: 180~202, 1985
- 3) LATTRELL, R.; J. BLUMBACH, W. DUERCKHEIMER, H.-W. FEHLHABER, K. FLEISCHMANN, R. KIRRSTETTER, B. MENCKE, K.-H. SCHEUNEMANN, E. SCHRINNER, W. SCHWAB, K. SEEGER, G. SEIBERT & M. WIEDUWILT: Synthesis and structure-activity relationships in the cesprome series. I. 7-[2-(2-Aminothiazol-4-yl)-2-(*Z*)-oxyiminoacetamido]-3-[(substituted-1-pyridinio)-methyl]ceph-3-em-4-carboxylates. *J. Antibiotics* 41: 1374~1394, 1988
- 4) NAITO, T.; S. ABURAKI, H. KAMACHI, Y. NARITA, J. OKUMURA & H. KAWAGUCHI: Synthesis and structure-activity relationships of a new series of cephalosporins, BAY-28142 and related compounds. *J. Antibiotics* 39: 1092~1107, 1986
- 5) DALOIA, E.; G. LIM, J. MELTON & J. ROUBIE: A convenient method for the preparation of (*Z*)-(2-aminothiazol-4-yl)-2-methoxyiminoacetylchloride hydrochloride. *Synth. Commun.* 23: 2617~2622, 1993
- 6) YAMANAKA, H.; T. CHIBA, K. KAWABATA, H. TAKASUGI, T. MASUGI & T. TAKAYA: Studies on β -lactam antibiotics. IX: Synthesis and biological activity of a new orally active cephalosporin, cefixime (FK027). *J. Antibiotics* 38: 1738~1751, 1985
- 7) TAKAYA, T.; H. TAKASUGI, T. MASUGI, T. CHIBA, H. KOCHI, T. TAKANO & H. NAKANO: Structure-activity relationships of sodium *7β*-[(*Z*)-2-(2-amino-4-thiazolyl)-2-(methoxyimino)acetamido]-3-cephem-4-carboxylate (ceftizoxime) and its related compounds. *Nippon Kagaku Kaishi* 5: 785~804, 1981